Advertisement

Sphere

From Academic Kids

For other uses, see sphere (disambiguation).
Missing image
Sphere.jpg


A sphere is, roughly speaking, a ball-shaped object. In non-mathematical usage, the term sphere is often used for something "solid" (which mathematicians call ball). But in mathematics, sphere refers to the boundary of a ball, which is "hollow". This article deals with the mathematical concept of sphere.

Contents

Definitions/Postulates

Great circle - The intersection of the sphere and a plane that contains the center of the sphere

A great circle is finite and returns to its origional starting point
There is a unique circle passing through any pair of nonpolar points

Polar points - The intersection of a sphere and a line passing through the origin of the sphere

Polar points are opposite each other on a sphere

Arc of a Great circle - The shortest distance between two points on a sphere (while not going through the center)


Geometry

In three-dimensional Euclidean geometry, a sphere is the set of points in R3 which are at distance r from a fixed point of that space, where r is a positive real number called the radius of the sphere. The fixed point is called the center or centre, and is not part of the sphere itself. The special case of r = 1 is called a unit sphere.

Equations

Missing image
Jade.png
A jade sphere with luminosity effects and blended layers.

In analytic geometry, a sphere with center (x0, y0, z0) and radius r is the set of all points (x, y, z) such that

<math>(x - x_0 )^2 + (y - y_0 )^2 + ( z - z_0 )^2 = r^2 \,<math>

The points on the sphere with radius r can be parametrized via

<math> x = x_0 + r \sin \theta \; \cos \phi <math>
<math> y = y_0 + r \sin \theta \; \sin \phi \qquad (0 \leq \theta \leq \pi \mbox{ and } -\pi < \phi \leq \pi) \,<math>
<math> z = z_0 + r \cos \theta \,<math>

(see also trigonometric functions and spherical coordinates).

A sphere of any radius centered at the origin is described by the following differential equation:

<math> x \, dx + y \, dy + z \, dz = 0. <math>

This equation reflects the fact that the position and velocity vectors of a point travelling on the sphere are always orthogonal to each other.

The surface area of a sphere of radius r is:

<math>A = 4 \pi r^2 \,<math>

and its enclosed volume is:

<math>V = \frac{4 \pi r^3}{3}<math>

The sphere has the smallest surface area among all surfaces enclosing a given volume and it encloses the largest volume among all closed surfaces with a given surface area. For this reason, the sphere appears in nature: for instance bubbles and small water drops are roughly spherical, because the surface tension minimizes surface area.

Missing image
Einstein_gyro_gravity_probe_b.jpg
One of the most perfect spheres ever created by humans. A fused quartz gyroscope for the Gravity Probe B experiment which differs from a perfect sphere by no more than a mere 40 atoms of thickness as it refracts the image of Einstein in the background. It is thought that only neutron stars are smoother.

The circumscribed cylinder for a given sphere has a volume which is 3/2 times the volume of the sphere, and also a surface area which is 3/2 times the surface area of the sphere. This fact, along with the volume and surface formulas given above, was already known to Archimedes.

A sphere can also be defined as the surface formed by rotating a circle about its diameter. If the circle is replaced by an ellipse, the shape becomes a spheroid.

Generalization to higher dimensions

Spheres can be generalized to higher dimensions. For any natural number n, an n-sphere is the set of points in (n+1)-dimensional Euclidean space which are at distance r from a fixed point of that space, where r is, as before, a positive real number.

  • a 0-sphere is a pair of points <math>(-r, r)<math>
  • a 1-sphere is a circle of radius r
  • a 2-sphere is an ordinary sphere
  • a 3-sphere is a sphere in 4-dimensional Euclidean space

Spheres for n > 2 are sometimes called hyperspheres. The n-sphere of unit radius centred at the origin is denoted Sn and is often referred to as "the" n-sphere.

Generalization to metric spaces

More generally, in a metric space (E,d), the sphere of center x and radius r > 0 is the set

S(x;r) = { y ∈ E | d(x,y) = r } .

If the center is a distinguished point considered as origin of E, e.g. in a normed space, it is not mentionned in the definition and notation. The same applies for the radius if it is taken equal to one, i.e. in the case of a unit sphere.

In contrast to a ball, a sphere may be empty. For example, in Zn with Euclidean metric, a sphere of radius r is nonempty only if r can be written as sum of n squares of integers.

See also

Topology

In topology, an n-sphere is defined as a space homeomorphic to the boundary of an (n+1)-ball; thus, it is homeomorphic to the Euclidean n-sphere described above under Geometry, but perhaps lacking its metric.

The n-sphere is denoted Sn. It is an example of a compact n-manifold without boundary. A sphere need not be smooth; if it is smooth, it need not be diffeomorphic to the Euclidean sphere.

The Heine-Borel theorem is used in a short proof that an n-sphere is compact. The sphere is the inverse image of a one-point set under the continuous function ||x||. Therefore the sphere is closed. Sn is also bounded. Therefore it is compact.

See also

External links

es:Esfera fr:Sphre gd:Baiscmheall he:כדור (גיאומטריה) ia:Sphera it:Sfera ja:球 ja:球面 nl:bol pl:sfera pt:Esfera ru:Сфера (поверхность) simple:Sphere sl:sfera fi:pallo sv:Sfr

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools