Advertisement

Quadric

From Academic Kids

Missing image
Quadric_Ellipsoid.jpg
Ellipsoid
Missing image
Quadric_Elliptic_Paraboloid.jpg
Elliptic Paraboloid
Missing image
Quadric_Hyperbolic_Paraboloid.jpg
Hyperbolic Paraboloid
Missing image
Quadric_Hyperboloid_1.jpg
Hyperboloid of One Sheet
Missing image
Quadric_Hyperboloid_2.jpg
Hyperboloid of Two Sheets
Missing image
Quadric_Cone.jpg
Cone
Missing image
Quadric_Elliptic_Cylinder.jpg
Elliptic Cylinder
Missing image
Quadric_Hyperbolic_Cylinder.jpg
Hyperbolic Cylinder
Missing image
Quadric_Parabolic_Cylinder.jpg
Parabolic Cylinder

In mathematics a quadric, or quadric surface, is any D-dimensional hypersurface represented by a second-order equation in spatial variables (coordinates). If the space coordinates are <math>\{x_1, x_2, ... x_D\}<math>, then the general quadric in such a space is defined by the algebraic equation

<math>

\sum_{i,j=1}^D Q_{i,j} x_i x_j + \sum_{i=1}^D P_i x_i + R = 0 <math> for a specific choice of Q, P and R.

The normalized equation for a three-dimensional (D=3) quadric centred at the origin (0,0,0) is:

<math>

\pm {x^2 \over a^2} \pm {y^2 \over b^2} \pm {z^2 \over c^2}=1 <math>

Via translations and rotations every quadric can be transformed to one of several "normalized" forms. In three-dimensional Euclidean space, there are 16 such normalized forms, and the most interesting are the following:

ellipsoid <math>x^2/a^2 + y^2/b^2 + z^2/c^2 = 1 \,<math>
    spheroid (special case of ellipsoid)   <math> x^2/a^2 + y^2/a^2 + z^2/b^2 = 1 \,<math>
       sphere (special case of spheroid) <math>x^2/a^2 + y^2/a^2 + z^2/a^2 = 1 \,<math>
elliptic paraboloid <math>x^2/a^2 + y^2/b^2 - z = 0 \,<math>
    circular paraboloid <math>x^2/a^2 + y^2/a^2 - z = 0 \,<math>
hyperbolic paraboloid <math>x^2/a^2 - y^2/b^2 - z = 0 \,<math>
hyperboloid of one sheet <math>x^2/a^2 + y^2/b^2 - z^2/c^2 = 1 \,<math>
hyperboloid of two sheets <math>x^2/a^2 - y^2/b^2 - z^2/c^2 = 1 \,<math>
cone <math>x^2/a^2 + y^2/b^2 - z^2/c^2 = 0 \,<math>
elliptic cylinder <math>x^2/a^2 + y^2/b^2 = 1 \,<math>
    circular cylinder <math>x^2/a^2 + y^2/a^2 = 1 \,<math>
hyperbolic cylinder <math>x^2/a^2 - y^2/b^2 = 1 \,<math>
parabolic cylinder <math>x^2 + 2y = 0 \,<math>

In real projective space, the ellipsoid, the elliptic paraboloid and the hyperboloid of two sheets are equivalent to each other up to a projective transformation; the two hyperbolic paraboloids are not different from each other (these are ruled surfaces); the cone and the cylinder are not different from each other (these are "degenerate" quadrics, since their Gaussian curvature is zero).

In complex projective space all of the nondegenerate quadrics become indistinguishable from each other.

External links

it:Quadrica ja:二次曲面

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools