Advertisement

LU decomposition

From Academic Kids

In linear algebra, a LU decomposition, or LUP decomposition is a matrix decomposition of a matrix into a lower triangular matrix L, an upper-triangular matrix U, and a permutation matrix P. This decomposition is used in numerical analysis to solve systems of linear equations.

Contents

Definition

Let A be an invertible matrix over a field. The matrix A can be decomposed as

<math>P^{-1}A = L U <math>
<math>A = L UP <math>

where P is a permutation matrix (as is P-1), L is a lower triangular matrix, and U is an upper triangular matrix. Sometimes the permutation matrix can be chosen to be the identity matrix. In this case the decomposition becomes <math>A = L U.<math>

Notes

If the matrix A is positive definite we can construct the even simpler Cholesky decomposition

<math>A = L L^{*}<math>

with L a lower triangular matrix with positive diagonal entries, and L* the conjugate transpose of L.

Main idea

The LU decomposition is basically a modified form of Gaussian elimination. We transform the matrix A into an upper triangular matrix U by eliminating the entries below the main diagonal. The elimination is done column by column starting from the left, by multiplying A to the left with atomic lower triangular matrices.

Algorithms

There are two different algorithms to construct a LU-decomposition. The Doolittle decomposition constructs a unit lower triangular matrix and an upper triangular matrix, whereas the Crout algorithm constructs a lower triangular matrix and an unit upper triangular matrix.

Doolittle algorithm

Given an NxN matrix

<math>

A= (a_{n,n}) <math> we define

<math> A^{(0)} := A<math>

and then we iterate n = 1,...,N-1 as follows.

We eliminate the matrix elements below the main diagonal in the n-th column of A(n-1) by adding to i-th row of this matrix the n-th row multiplied by

<math>l_{i,n} := -\frac{a_{i,n}^{(n-1)}}{a_{n,n}^{(n-1)}}<math>

for <math>i = n+1,\ldots,N<math>. This can be done by multiplying A(n-1) to the left with the lower triangular matrix

<math>

L_n = \begin{pmatrix}

    1 &        &           &         &         & 0 \\
      & \ddots &           &         &         &   \\
      &        &         1 &         &         &   \\
      &        & l_{n+1,n} &  \ddots &         &   \\
      &        &    \vdots &         &  \ddots &   \\
    0 &        &   l_{N,n} &         &         & 1 \\

\end{pmatrix}. <math>

We set

<math> A^{(n)} := L_n A^{(n-1)}.<math>

After N-1 steps, we eliminated all the matrix elements below the main diagonal, so we obtain an upper triangular matrix A(N-1). We find the decomposition

<math>

A = L_{1}^{-1} L_{1} A^{(0)} = L_{1}^{-1} A^{(1)} = L_{1}^{-1} L_{2}^{-1} L_{2} A^{(1)} = L_{1}^{-1}L_{2}^{-1} A^{(2)} =\ldots = L_{1}^{-1} \ldots L_{N-1}^{-1} A^{(N-1)}. <math>

Denote the upper triangular matrix A(N-1) by U, and <math>L=L_{1}^{-1} \ldots L_{N-1}^{-1}<math>. Because the inverse of a lower triangular matrix Ln is again a lower triangular matrix, and the multiplication of two lower triangular matrices is again a lower triangular matrix, it follows that L is a lower triangular matrix. We obtain <math>A=LU<math>.

It is clear that in order for this algorithm to work, one needs to have <math>a_{n,n}^{(n-1)}\not=0<math> at each step (see the definition of <math>l_{i,n}<math>). If this assumption fails at some point, one needs to interchange n-th row with another row below it before continuing. This is why the LU decomposition in general looks like <math>P^{-1}A = L U <math>.

Crout algorithm

Main article Crout matrix decomposition

Applications

Solving linear equations

Given a matrix equation

<math>A x = L U x = b<math>

we want to solve the matrix A for a given b. Triangular matrices (upper and lower) can be solved directly using forward and backward substitution without using the slow Gaussian elimination process. So when we have to solve a matrix equation multiple times for different b it is faster to do a LU-decomposition of the matrix once and then solve the triangular matrices for the different b than to use Gaussian elimination each time.

Inverse matrix

The matrices L and U can be used to calculate the matrix inverse. Computer implementations that invert matrices often use this approach.

Related articles

See also

it:Decomposizione LU ja:LU分解 nl:LU-decompositie pl:Metoda LU

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools